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SUMMARY

In this paper, a novel adaptive gradient smoothing method (GSM) based on irregular cells and strong form
of governing equations for fluid dynamics problems with arbitrary geometrical boundaries is presented. The
spatial derivatives at a location of interest are consistently approximated by integrally averaging of gradients
over a smoothing domain constructed around the location. Such a favorable GSM scheme corresponds
to a compact stencil with positive coefficients of influence on regular cells. The error equidistribution
strategy is adopted in the solution-based adaptive GSM procedure, and adaptive grids are attained with the
remeshing techniques and the advancing front method. In this paper, the adaptive GSM has been tested for
solutions to both Poisson and Euler equations. The sensitivity of the GSM to the irregularity of the grid
is examined in the solutions to the Poisson equation. We also investigate the effects of error indicators
based on the first derivatives and second derivatives of density, respectively, to the solutions to the shock
flow over the NACA0012 airfoil. The adaptive GSM effectively yields much more accurate results than
the non-adaptive GSM solver. The whole adaptive process is very stable and no spurious behaviors are
observed in all testing cases. The cosmetic techniques for improving grid quality can effectively boost
the accuracy of GSM solutions. It is also found that the adaptive GSM procedure using the second
derivatives of density to estimate the error indicators can automatically and accurately resolve all key
features occurring in the flow with discontinuities. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In numerical methods, a gradient at a location is often approximated with the help of Taylor-series
expansion or a predefined polynomial function [1]. Alternatively, it can also be approximated by
spatial averaging of gradients over a smoothing domain constructed around the location of interest.
Such a technique is referred as gradient smoothing operation [2].

The use of gradient smoothing operation can be found in many weak-form meshfree methods.
It has been used by Chen et al. [3] for stabilizing the nodal integration in the Galerkin meshfree
method. It is also used in the linearly conforming point interpolation method [4, 5] for solution
stabilization and for obtaining upper bound solutions. In these methods, the gradient smoothing
operation was used in the approximation of strains. With an adopted piecewise constant smoothing
function, via Green–Gauss theorem (known as divergence theorem), the domain integration in the
original form was converted into line integration along the boundaries of smoothing domain in
two-dimensional problems. It was found that the stabilized nodal integration gave higher efficiency
with desired accuracy and convergent properties. The use of smoothing operation also avoided the
evaluation of derivatives of grid-free shape functions required by direct nodal integration and just
resulted in higher accuracy. The smoothed gradient matrix was shown to satisfy linear exactness in
the Galerkin approximation of a second-order partial differential equation. In addition, smoothing
techniques have also been employed in the widely used smoothed particle method [6, 7] mainly
as a general means of function approximation.

Most above-mentioned research efforts relate to the use of gradient smoothing operation for
weak-form governing equations. In such applications, the gradient smoothing operation is only
adopted as an auxiliary component in the development of main frameworks for various meshfree
methods. A gradient smoothing method (GSM) for strong-form equations has been most recently
developed [2], in which the gradient smoothing operation is consistently and successively used
to approximate the first and second derivatives at different locations and the resultant instanta-
neous equations are solved subsequently. Various discretization schemes for approximating spatial
derivatives have been devised and some favorable schemes valid for various types of grid are
selected from the viewpoints of efficiency and accuracy. The excellent schemes for the GSM have
been successfully formulated and applied for simulating compressible flows and heat conduction
problems. Our previous efforts showed that the proposed GSM is conservative, conformal, efficient,
robust, and accurate.

Our previous GSM solutions for heat conduction and compressible flow problems, as presented
by Liu and Xu [2], have been attained using pre-generated fixed grids with nodes that can
be irregularly distributed. Such fixed grids may not be good enough to cater for the flow
phenomena involving abrupt changes, for example, a flow over an RAE2822 airfoil [2]. Notice-
able discrepancy between GSM solution to the experimental data was still observed across the
shock region, mainly due to the insufficiently fine cells in the shock area that is, in general,
unknown when the grids are created before the analysis. Hence, it is very difficult to generate
a good set of grid before the solutions to the flow field are attained. The solution-based adap-
tive processes [8, 9] give the solutions to overcome such a difficulty and consequently yield
a set of optimal grid suitable for abrupt changes. The main objective in our current study is
to develop an adaptive remeshing process for the robust, stable, and accurate GSM so as to
automatically and successfully resolve the flows with abrupt changes, such as a shock flow, in a
self-contained manner. Besides, the sensitivity of the GSM to the irregularity of grid is further
examined.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:499–529
DOI: 10.1002/fld



AN ADAPTIVE GSM FOR FLUID DYNAMICS PROBLEMS 501

In this paper, our recent progress in the development of the adaptive GSM is presented. In
the following sections, the principle of the GSM is first introduced. The GSM approximations to
the gradients (first derivative) and the Laplace operator (second derivative) of a field variable are
presented in detail. The adopted adaptive remeshing process using the advancing front technique
is described in details. The adaptive GSM is then used to solve the Poisson equations for bench-
marking purpose. The roles of some cosmetic postprocesses for adaptive grids, including removal
of redundant triangles, diagonal swapping, and grid smoothing, are also addressed. Finally, the
successful application of the adaptive GSM to resolve an actual fluid flow problem of an inviscid
shock flow over the NANA0012 airfoil is presented.

2. GRADIENT SMOOTHING METHOD (GSM)

In the GSM, derivatives at various locations, such as at nodes, centroids of cells, and midpoints of
cell-edges, are approximated using gradient smoothing operation over relevant gradient smoothing
domains. This section briefly elucidates the fundamental principles and implementation procedure
in the GSM.

2.1. Gradient smoothing operation

For simplicity, a two-dimensional problem is considered here to illustrate the gradient smoothing
operation. Such a process was initially proposed to approximate a function or its gradient at a
point [2, 6, 10, 11]. For example, the gradients of a field variable U at a point of interest at xi in
domain �i can be approximated in the form of

∇Ui ≡∇U (xi )≈
∫

�i

∇U (x) �
w(x−xi )dx (1)

where ∇ is gradient operator and �
w is a smoothing function.

If we integrate Equation (1) by parts or use divergence theorem, Equation (1) becomes

∇Ui ≈
∮

��i

U (x) �
w(x−xi )

⇀
n ds−

∫
�i

U (x)∇ �
w(x−xi )dV (2)

where ��i represents the boundary of the gradient smoothing domain and
⇀
n denotes the outward-

pointing unit normal vector on ��i , as shown in Figure 1.
The smoothing function, �

w, is chosen properly according to the requirement on the accuracy
in approximation of the function, and needs to satisfy some conditions (see, for example, [2, 7]).
For simplicity, the smoothing function in current study is set to be piecewise constant over the
smoothing domain as follows:

�
w=

{
1/Vi , x∈�i

0, x /∈�i
(3)

where Vi stands for the area of the smoothing domain �i . The proposed smoothing function can
automatically satisfy the basic condition of partition of unity over the smoothing domain, e.g.∫
�i

�
w(x−xi )dV =1.
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Figure 1. A smoothing domain for a point at xi .

Thus, the second term on the right-hand side in Equation (2) vanishes, and Equation (2) reduces to

∇Ui ≈ 1

Vi

∮
��i

U
⇀
n ds (4)

Equation (4) gives a simple way to approximate to gradients at a point by area-weighted integral
along the boundary of a local smoothing domain. It is apparent that using Equation (4) is more
efficient than using Equation (1) to approximate the gradients, because numerical integral along
the boundary is much more cost-effective than over the surface of the smoothing domain.

Analogously, by successively applying the gradient smoothing technique for second-order deriva-
tives [12–14], the Laplace operator at an arbitrary point xi can be approximated as

∇ ·(∇Ui )≈ 1

Vi

∮
��i

⇀
n ·∇U ds (5)

Hence, spatial derivatives at any point of interest can be approximated using Equations (4) and (5)
over a smoothing domain that needs to be properly defined for a purpose [2].

2.2. Smoothing domains

In the GSM, the values of field functions are stored at nodes that can be irregularly distributed in
space. By connecting nodes, the problem domain is first divided into a set of primitive cells of any
shape. Because triangular cells can be automatically generated, they are usually preferred. Based
on these cells, a smooth domain for any point of interest can be constructed. We devise different
types of smoothing domains for approximating first derivative at different locations. Figure 2 shows
three types of gradient smoothing domains, over which spatial derivatives are approximated with
gradient smoothing operation. The first type of smoothing domain is the node-associated GSD
(nGSD) for the approximation of derivatives at a node of interest. As shown in Figure 2, the
nGSD is formed by connecting the centroids of relevant triangles with midpoints of influenced
cell-edges. The second is identical to a primitive cell, which is used for approximating derivatives
at the centroid of the cell, as in the cell-centered FVM [15]. It is called centroid-associated GSD
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Figure 2. Illustration of gradient smoothing domains and domain-edge vectors adopted in GSM.

(cGSD) here. The third is named midpoint-associated GSD (mGSD) used for the calculation of
the gradients at the midpoint of a cell-edge of interest. The proposed mGSD, as shown in Figure 2,
is formed by connecting the end-nodes of the cell-edge with the centroids on the both sides
of the cell-edge. As reported in [2], the adoption of gradient smoothing operation over such a
mGSD to approximate the gradient at a midpoint, which is needed to discretized Equation (5),
can successfully avoid the checkerboard problem that is usually encountered by the approximation
based on simply arithmetic average of gradients at two constitute nodes. Furthermore, the resultant
scheme is remarkably robust to the irregularity of triangular cells across the domain.

By virtue of Equations (4) and (5), spatial derivatives at any point of interest can be approximated
based on the corresponding smoothing domain described above. As outlined by Liu and Xu [2],
different schemes are devised and then evaluated on the basis of stencil analyses and numerical
tests. As a result, a scheme which is based on one-point quadrature and consistent application of
gradient smoothing at all locations of interest is most preferable, because of its balanced accuracy
and computational efficiency, and attractive robustness to grid irregularity. In this paper, this scheme
is adopted in the development of adaptive GSM.

2.3. Approximation to spatial derivatives

We now need to accurately predict the integrals along the boundaries of various types of GSDs. In
this work, spatial derivatives (both first-order and second-order) at nodes are approximated using
the one-point quadrature (rectangular rule). As such, the integrand (U or ∇U ) for each domain-
edge takes the values at the midpoint of the connected cell-edge. Such a procedure is independent
of the values at centroids of cells and, therefore, the approximation for the gradients at centroids,
which is necessarily needed in two-point quadrature schemes (see, for example, [5]), is avoided.
Two-point quadrature is only used for the approximation of gradients at midpoints of cell-edges.
Details will be elucidated below.
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2.3.1. First derivatives at nodes. With the gradient smoothing operation using Equation (4), the
first-order derivatives at nodes can be approximated as

�
�x

(UN )i ≈ 1

(VN )i

ni∑
k=1

(�SxN )i jk (UM )i jk (6)

�
�y

(UN )i ≈ 1

(VN )i

ni∑
k=1

(�SyN )i jk (UM )i jk (7)

where

(�SxN )i jk =�SMi jk Ci jk jk+1
(nx )Mi jk Ci jk jk+1

+�SMi jk Ci jk−1 jk
(nx )Mi jk Ci jk−1 jk

(8)

(�SyN )i jk =�SMi jk Ci jk jk+1
(ny)Mi jk Ci jk jk+1

+�SMi jk Ci jk−1 jk
(ny)Mi jk Ci jk−1 jk

(9)

Here, i denotes the node of interest and jk is the other end-node of the cell-edge linked to node
i (see Figure 2). Mi jk denotes the midpoint of the cell-edge of interest, i j k . Ci jk jk+1 and Ci jk−1 jk
represent the centroids of two triangular cells connected to the cell-edge i j k . The total number
of supporting nodes within the stencil of the node i is denoted by ni . UN , UM , and UC denote
values of the field variable at nodes, midpoints of cell-edges, and centroids of triangular cells,
respectively. Thanks to the one-point quadrature, for an nGSD of interest, a pair of domain-edges
connected with cell-edge i j k are evaluated in a lumped manner. �SxN and �SyN correspond to the
two components of the paired domain-edges. nx and ny represent the two components of the unit
normal vector of the domain-edge under a Cartesian coordinate system. VN is the area of an nGSD.
These geometrical parameters are calculated and stored before the resultant algebraic equations
are solved.

The values of the field variable U at non-storage locations, i.e. at midpoints and centroids, are
computed by simple interpolation of function values at related nodes, respectively, in the manner of

(UM )i jk = (UN )i +(UN ) jk

2
(10)

(UC )i jk jk+1 =

⎧⎪⎪⎨
⎪⎪⎩

(UN )i +(UN ) jk +(UN ) jk+1

3
, 1�k<ni

(UN )i +(UN ) jni +(UN ) j1

3
, k=ni

(11)

(UC )i jk−1 jk =

⎧⎪⎪⎨
⎪⎪⎩

(UN )i +(UN ) jk +(UN ) jk−1

3
, 1<k�ni

(UN )i +(UN ) j1 +(UN ) jni

3
, k=1

(12)

The values of field function at centroids are only needed for approximation of gradients at midpoints
of cell-edges.
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2.3.2. Second derivatives at nodes. In the GSM, with one-point quadrature, the second derivatives
in Laplace operator are approximated using Equation (5) in the following manner:

∇ ·(∇UN )i ≈ 1

�i

ni∑
k=1

[
�
�x

(UM )i jk (�SxN )i jk +
�
�y

(UM )i jk (�SyN )i jk

]
(13)

It is apparent that the gradients at midpoints are needed to complete the approximation of second-
order derivatives at nodes. As mentioned in the previous section, the two-point quadrature is
proposed to approximate gradients at midpoints in the GSM. As a result, using Equation (4) over
the relevant mGSD as shown in Figure 2, the first-order derivatives at the midpoint of cell-edge
of interest, i j k , are attained by

�
�x

(UM )i jk ≈
{
1

2
(�SxM )iCi jk jk+1

[(UN )i +(UC )i jk jk+1
]+ 1

2
(�SxM ) jkCi jk jk+1

[(UN ) jk +(UC )i jk jk+1
]

+1

2
(�SxM )iCi jk−1 jk

[(UN )i +(UC )i jk−1 jk
]+ 1

2
(�SxM ) jkCi jk−1 jk

[(UN ) jk +(UC )i jk−1 jk ]
}

× 1

(VM )i jk
(14)

�
�y

(UM )i jk ≈
{
1

2
(�SyM )iCi jk jk+1

[(UN )i +(UC )i jk jk+1
]+ 1

2
(�SyM ) jkCi jk jk+1

[(UN ) jk +(UC )i jk jk+1
]

+1

2
(�SyM )iCi jk−1 jk

[(UN )i +(UC )i jk−1 jk
]+1

2
(�SyM ) jkCi jk−1 jk

[(UN ) jk +(UC )i jk−1 jk ]
}

× 1

(VM )i jk
(15)

where VM represents the area of an mGSD. The relevant domain-edge vectors, �SxM and �SyM ,
for the mGSD of interest, are calculated as follows:

(�SxM )iCi jk jk+1
= �SiCi jk jk+1

(nx )iCi jk jk+1
, (�SyM )iCi jk jk+1

=�SiCi jk jk+1
(ny)iCi jk jk+1

(�SxM ) jkCi jk jk+1
= �S jkCi jk jk+1

(nx ) jkCi jk jk+1
, (�SyM ) jkCi jk jk+1

=�S jkCi jk jk+1
(ny) jkCi jk jk+1

(16)

(�SxM )iCi jk−1 jk
= �SiCi jk−1 jk

(nx )iCi jk−1 jk
, (�SyM )iCi jk−1 jk

=�SiCi jk−1 jk
(ny)iCi jk−1 jk

(�SxM ) jkCi jk−1 j
= �S jkCi jk−1 jk

(nx ) jkCi jk−1 jk
, (�SyM ) jkCi jk−1 j

=�S jkCi jk−1 jk
(ny) jkCi jk−1 jk

(17)

For regular grids (cells in square and equilateral triangle shapes), the compact stencils with
positive weighting coefficients for the approximated Laplace operator are obtained, as shown in
Figure 3. As addressed in the stencil analyses in [2], such a scheme corresponds to second-order
accuracy and the involved computation is cost-effective. This is one of the reasons why such a
discretization scheme for spatial derivatives is promoted.

It should be mentioned that the principle about gradient smoothing operation can be extended
easily for three-dimensional problems. For example, in cases where tetrahedral elements are used as
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Figure 3. Stencils for the approximation of the Laplace operator: (a) square and (b) equilateral triangles.

Node of interest

Surrounding nodes 

i

j1

j2

j3

Partial nGSD 

Centroid of a surface

Midpoint of an edge

Centroid of a tetrahedra 

Figure 4. Partially formed three-dimensional node-associated gradient smoothing domain based
on a tetrahedral primal element.

primal elements, a typical node-associated smoothing domain can be formed by joining all domain
faces each of which is generated by connecting the midpoint of a common edge, the centroids
of two involved element surfaces and the centroid of the involved primal element. A partially
formed three-dimensional node-associated gradient smoothing domain based on a tetrahedral primal
element is shown in Figure 4, where the relevant domain faces are shaded. Hence, the boundary
integrals occurring in Equations (4) and (5) would be replaced by integrals over domain surfaces
of such a three-dimensional nGSD. Accordingly, in three-dimensional applications, the surface
normals should be used instead of boundary normals for three-dimensional problems.

2.4. Approximation to temporal derivatives

For a transient or pseudo-transient problem, the governing equation can be rewritten in the form of

�
�t

(UN )=−R (18)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:499–529
DOI: 10.1002/fld



AN ADAPTIVE GSM FOR FLUID DYNAMICS PROBLEMS 507

where R represents the residual dependent of the field variable U and its derivatives. In current
study, the temporal term (�UN/�t) is approximated with the following explicit five-stage Runge–
Kutta (RK5) method [16]:

(UN )
(0)
i = (UN )ni

(UN )
(1)
i = (UN )

(0)
i −�1�t R

(0)
i

(UN )
(2)
i = (UN )

(0)
i −�2�t R

(1)
i

(UN )
(3)
i = (UN )

(0)
i −�3�t R

(2)
i

(UN )
(4)
i = (UN )

(0)
i −�4�t R

(3)
i

(UN )
(5)
i = (UN )

(0)
i −�5�t R

(4)
i

(19)

where the residual R(k)
i is evaluated with the values of the field function and its derivatives

approximated with the kth-stage RK solution at node i for every time-step. �t denotes the time-step,
and the coefficients adopted in current study are �1=0.0695, �2=0.1602, �3=0.2898, �4=0.5060,
and �5=1.000.

The RK5 method has been widely used in the simulations of many transient fluid flow problems,
because of its satisfactory efficiency and stability. Besides, with the RK5 method, only the 0th- and
5th-stage solutions at nodes are needed to be stored in memory, which saves a lot in computational
demands.

3. ADAPTIVE REMESHING TECHNIQUE

The adaptive process aims at yielding a set of ‘optimal’ grid on which an anticipated accuracy
can be achieved. Such a grid, as outlined by Babuska and Rheinboldt [17], corresponds to equally
distributed errors across the field. This implies that the ‘optimal’ grid can be achieved with the
help of the heuristic error equidistribution strategy. Thus, in current study, an adaptive process
based on the error equidistribution strategy is developed and used to boost the GSM solver for
better accuracy. In the proposed adaptive process, a directional error indicator at each node for
a current grid is evaluated first, followed by the determination of meshing parameters based on
error equidistribution strategy. Once the meshing parameters are obtained, the whole field will be
remeshed with the advancing front technique. The whole process is carried out in an iterative way
till the expected accuracy or number of adaptive loops is reached. This section contributes to the
brief introduction about the directional error indicator, at length explanation how to determine the
meshing parameters required by the advancing front technique, and the description of the overall
adaptive GSM procedure.

3.1. Directional error indicator

In an adaptive process, it is desirable to choose an appropriate error indicator which can be used
to identify the regions for further either refinement or coarsening. The direction-oriented error
indicator as outlined by Peiro et al. [18] cannot only serve such a purpose but assist to determine
the coordinates of nodes for a new set of grid across the field. Therefore, it is adopted in the current

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:499–529
DOI: 10.1002/fld



508 G. X. XU, G. R. LIU AND A. TANI

study. For example, in a one-dimensional problem, using finite element method procedure, the
variation of the error E within a cell in which the interested point x is located can be expressed as

Ee= 1

2
�(h−�)

∣∣∣∣d2Udx2

∣∣∣∣ (20)

where � and h, respectively, denote a local cell coordinate and the cell length. This relates the
error with the cell length and the second derivative at point x .

Furthermore, the root mean-square error over the cell can be computed as

‖Ee‖L2 =
√∫ h

0

E2
e

h
dU = 1√

120
h2
∣∣∣∣d2Udx2

∣∣∣∣ (21)

According to error equidistribution strategy, a set of ‘optimal grid’ corresponds to the case where
the errors are equally distributed across the field, implying that

h2
∣∣∣∣d2Udx2

∣∣∣∣=C (22)

where C is a positive constant.
More precisely, if � is used to denote the ‘optimal’ spacing, for the set of ‘optimal’ grid, the

following relation holds:

�2
∣∣∣∣d2Udx2

∣∣∣∣=C (23)

This equation gives the way to determine the ‘optimal’ spacing on conditions that the second
derivatives on a current set of one-dimensional grid are approximated.

Equation (23) can be directly extended to multi-dimensional problems. For a 2D problem as
concerned here, it can be written in the quadratic form as

�2�

(
2∑

i, j=1
mi j�i� j

)
=C (24)

where � is an arbitrary unit vector, �� is the spacing along the direction of �, and mi j are the
components of a 2 × 2 symmetric matrix of second derivatives, which is

mi j = �2UN

�xi�x j
(25)

The meaning of Equation (24) is graphically illustrated in Figure 5 which shows how the values
of the spacing in the � direction can be obtained as the distance from the origin to the point of
intersection of the vector � with the boundary of an ellipse. The major and minor axial directions
(�1 and �2), and the lengths of semimajor and semiminor axes (�1 and �2) for the ellipse can be
readily computed, once the eigenvalues and eigenvectors of the matrix m are obtained, which will
be shown in the following section.

As shown in Equation (25), the second derivatives are required to be evaluated for estimating
numerical errors. Alternatively, Giraldo [19] has used the first derivatives for adaptive solutions
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Figure 5. Determination of nodal spacing � along a direction �.

to fluid dynamic problems, for their obvious physical meanings. In doing so, the gradients that
are necessarily approximated in solution process are directly used in the error estimation. This
becomes particularly attractive for inviscid flows, since there are no second derivatives at all
appearing in original governing equations. Hence, the proposed variation is much more cost
effective. Accordingly, the components of modified matrix m become

mi j = �UN

�xi

�UN

�x j
(26)

In current study, the both options for approximating matrix m are examined in testing cases. Some
interesting results will be discussed in the section about numerical examples.

It should be pointed out that the attained grid is almost optimal when the local errors are
approximately equal at all nodes. Therefore, this approach described above is an asymptotic method
and demands iterative operation. However, as addressed by Peiro et al. [18], though these error
indicators have no rigorous mathematical proof, considerable success has been achieved with their
use in practical situations [8].

In addition, the presented error indicator is direction oriented so that it can be used to gener-
ated anisotropic grid by taking account of direction-dependent flow phenomena, such as shocks,
contact discontinuities, etc. Such features can be most economically represented on grids which
are stretched in appropriate directions. Besides, we have interests in the potential applications for
problems pertaining to moving objects and fluid–structure interactions. In such cases, large changes
in geometries and relative locations may occur, which sometimes violate the use of local treatment
techniques including node motion and local enrichment. Comparatively, the present remeshing
technique has its distinct advantages for such types of applications [20]. In present study, we restrict
our interest only to isotropic grid for the fixed computational domain. Our continuous efforts will
be rendered to explore the adaptive strategy with anisotropic grid based on such a directional error
indicator for time-dependent computational domains.

Although we restrict our focus on two-dimensional application in current study, the approach
described above can be extended for three-dimensional problems in a straightforward way.

3.2. Meshing parameters

Once the first derivatives are approximated based on the current grid and a value for constant C is
specified, Equation (24) with respect to ‘optimal’ spacing and nodal directions can be solved. In
the proposed adaptive process, three grid parameters for each node, i.e. the node spacing (�) equal
to the length of the semiminor axis, the stretching ratio (s) and the stretching direction (�) along
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the major axis, are used for grid regeneration. Based on a set of current grid and a user-specified
value for constant C , these parameters can be computed as

�=�2=
√

C

�2
(27)

s= �1
�2

=
√

�2
�1

(28)

�=�1 (29)

where �1 and �2 denote the eigenvalues of the matrix m at a node, respectively. Since major and
minor axes are orthogonal with each other, the major axis direction, �1, is calculated and chosen
as one of the grid parameters. It can be determined with the eigenvectors for the matrix m.

In order to generate a set of reasonable grid, two threshold values (�min and �max) are specified
as the bounds for the commutated spacing resulting from Equation (27) such that �min����max.
The maximum value �max is mainly used to avoid meaninglessly large spacing due to a vanishing
eigenvalue in Equation (27). The value of �max is usually chosen as the cell spacing adopted in
regions with uniform flow behaviors. The minimum value �min is used for preventing the algorithm
from creating an excessive refinement of cells in regions with large gradients, such as in shock
region. Besides, since we are interested in the isotropic grid in current study, the stretching ratio
is fixed at 1.0 throughout the numerical examples presented in this paper.

It is clear that the grid parameters for new grid generation depend strongly upon the choice of
the constant, C . In the present practice, it is defined as

C=�max�min (30)

where �max is the maximum eigenvalue in the entire domain.
Once the grid parameters are determined as described above, the adaptive grid can be regenerated

with the advanced front technique [9] which will be described in the following section.

3.3. Advancing front technique

The advancing front technique has a distinctive feature that cells and points are generated simul-
taneously. This enables the generation of cells of variable size and stretching, and differs from
the Delaunay concepts [20] which usually connect the nodes that are already distributed in space.
In general, the advancing front technique can result in high quality grids, and also offers the
flexibility in generating anisotropic grid and the liability in handling moving components. For the
sake of continuous studies to some broad extents, this technique is adopted in the development of
adaptive GSM.

In general, the advancing front technique is a bottom-up approach for grid generation. Firstly,
each boundary curve is discretized in turn. Nodes are placed on the boundary curve components
and then contiguous nodes are joined with straight line segments. These segments will become
edges of triangular cells in the later stage. The length of these segments must, therefore, be
consistent with the desired local distribution of grid spacings which are computed as described
in the preceding section. Successively, the triangular cells are generated. For a two-dimensional
domain, all the sides produced in the first step are assembled as initial front. At any given time, the
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Figure 6. Triangulation process used in our adaptive GSM code based on advancing front technique.

front contains the set of all the sides which are currently available to form a triangular cell. Thus,
the front is a dynamic data structure which is updated continuously during the generation process.
A side is selected from the front and a triangular element is generated according to computed grid
parameters. The triangulation process may involve creating a new node or simply connecting the
side to an existing node. Once the triangle is formed, the front is updated by removing the old side
out of the front list and adding the new sides into the front list. Then the triangulation proceeds
until the contents in the front become empty. Figure 6 illustrates the grid generation process with
the advancing front technique for a square planar domain where the initial front and the form of
the grid at various stages are depicted.

In-depth description about the advancing front technique can be found in [20].

3.4. The adaptive GSM procedure

The overall adaptive GSM solution procedure is summarized as follows:
Step 1: GSM solutions including first-order derivatives are approximated according to a set of

initial grid.
Step 2: The grid parameters (�, s and �) across the whole computational domain are calculated

based on the current grid.
Step 3: Discretization of boundary curves is performed using grid parameters obtained in Step 2.

The discretized boundaries are used as the initial fronts for the advancing front method.
Step 4: The triangulation process is carried out with the advancing front technique using the

grid parameters attained in Step 2, so as to generate the new adaptive grid.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:499–529
DOI: 10.1002/fld



512 G. X. XU, G. R. LIU AND A. TANI

GSM 
solver 

START

Nadp = 0 

Initial grid 

Calculation of regeneration parameters: , s and 

Boundary discretization 

Domain Triangulation 

Post-processing of new grid

quadtree-based solution interpolation 

Nadp Maxadp

 initial grid & 

Initial  solution 

Grid & 

updated solution 

Adaptive grid & 

Interpolated solution 

Yes
Nadp = Nadp + 1 

No END

Figure 7. Workflow of the overall adaptive procedure adopted in the adaptive GSM.

Step 5: Cosmetic techniques including diagonal swapping, removal of worse cells and grid
smoothing are applied to the new set of grid for the sake of improving grid quality.

Step 6: Interpolate the GSM solution for the current grid onto the new adaptive grid with the
help of quad-tree searching technique.

Step 7: Compute the solutions with GSM solver based on the new set of adaptive grid and
interpolated solutions obtained in Step 6.

Step 8: Repeat from Step 2 to Step 7, till the expected accuracy or the maximum number of
adaptive cycles is achieved.

The workflow of the overall adaptive GSM procedure as described above is shown in Figure 7.
During the adaptive process, a background grid for a problem of interest is needed mainly

for geometry definition. It is defined in a file with contents about the nodes composed of the
background grid, boundary segments, and supporting curves. For a simple problem as a square
domain, two cells are sufficient as the background grid. If a curve boundary exists in the problem
of interest, a sufficiently large number of nodes are required for accurately representing the shape
of the boundary. The file for the background grid is never altered during the adaptive process.

An initial grid with full meshing information for a problem of interest is required at the very
beginning of the adaptive process. Usually, the initial grid is very coarse consisting only of a small
number of triangles that can be manually defined. Such an initial grid can be replaced by a set of
well-defined grid, if available. The initial grid will be used for attaining the first set of solution in
the use of GSM solver. After that, it will be repeated replaced by the resultant ‘optimal’ grid as
the adaptive process advances.

Some post-processes aiming at improving quality of new grid, including removal of undesirable
cells, diagonal swapping, and grid smoothing, are carried out right after each set of new grid is
generated with the advancing front technique. The undesirable triangular cells are not necessarily
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bad in terms of quality but may be redundant. The removal of those cells can favorably result
in the reduction in the number of cells and nodes. The diagonal swapping is achieved by simply
reconnecting the existing nodes locally so that the grid is optimized. The existing nodes and the
number of cells will not be changed during such a process. In the adopted grid smoothing process,
an interior node of the grid is shifted towards the centroid of the polygon formed by its neighboring
cells. As a result, the grid quality can be improved in a more isotropic manner. The essence and
effects of these cosmetic techniques will be addressed in details in the numerical testing cases.

At the end of each adaptive cycle, the interpolation of GSM solutions from the current grid
onto a set of adaptive grid is performed. Initially, for each node in the set of new grid, the cell that
contains the node of interest is first needed to be found. The searching procedure is facilitated to
great extents with the use of quad-tree searching algorithm [21]. The quad-tree data structure for
each set of current grid has been well defined before the generation of new grid. It is also used
for the interpolation of grid parameters from the current grid to any newly created node in the
processes of boundary discretization and domain triangulation. Subsequently, the interpolation is
carried out using weak Lagrange–Galerkin procedure [19]. The interpolated solutions will be used
as the initial solutions for the consequent GSM computation.

4. NUMERICAL EXAMPLES

Numerical tests on two-dimensional Poisson and Euler equations are conducted using our adaptive
GSM code as described above.

4.1. Solutions to Poisson equations

4.1.1. Governing equations. Poisson equation for a square computational domain is first solved
with our GSM code. The Poisson equation governs many physical problems, such as the heat
conduction problems with sources. In current study, the Dirichlet conditions are prescribed on all
boundaries. The pseudo-transient approach is adopted for pursuing steady-state solutions.

The governing equations under investigation take the following form:

�U
�t

= �2U
�x2

+ �2U
�y2

− f (x, y) (0�x�1,0�y�1) (31)

The source, initial conditions, and analytical solution are given as follows:

f (x, y, t)=sin(�x)sin(�y)

U (x, y,0)=0
(0�x�1,0�y�1) (32)

Û (x, y)=− 1

2�2
sin(�x)sin(�y) (0�x�1,0�y�1) (33)

The contour plots of the analytical solution to the problem and the magnitude of its gradients
are shown in Figure 8(a)–(b).

As shown in Figure 8(b), the red spots represent the regions with larger gradients, while blue
spots indicate the regions with smaller gradients. We expect to see more nodes deployed in the
red spots and fewer nodes in the blue areas, when the proposed adaptive process is engaged to
remesh the domain.
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Figure 8. Contour plots of analytical solutions to the Poisson problem: (a) field function and
(b) magnitude of resultant gradients.

4.1.2. Evaluation of numerical errors. Three types of numerical errors are evaluated in the study.
The convergence error index, εcon, takes the form of

εcon=
√

nnode∑
i=1

(U (n+1)
i −U (n)

i )2

/√
nnode∑
i=1

(U (1)
i −U (0)

i )2 (34)

where U (n)
i denotes the predicted value of the field variable at node i at the nth iteration, and

nnode is the total number of nodes in the domain. The value of εcon is monitored during iterations
and used to terminate the iterative process. In most simulations, in order to exclude the effect
due to the temporal discretization, computations are not stopped until εcon becomes stabilized, as
indicated in Figure 9.

The numerical error in a GSM solution for the overall field is defined using L2-norm of error,
in the manner of

error=
√

nnode∑
i=1

(Ui −Ûi )2

/√
nnode∑
i=1

Û 2
i (35)

where Ui and Ûi are predicted and analytical solutions at node i , respectively. This type of error
is used to compare the accuracy among different schemes.

The third type of error is the node-wise relative error, which is estimated in the form of

rerrori =|Ui −Ûi |/|Ûi | (36)

The node-wise relative errors distributed over the computational domain are used to identify
problematic regions in simulations.
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Figure 9. Plot of the profile on convergence history.

4.1.3. Adaptive solutions. In this study, we find that the controlled advancing front technique
may result in irregular triangles with bad quality. The irregularity of all triangular cells in the
computational domain can be quantified with the following formula:

�=
∑ne

i=1
(ai −bi )2+(bi −ci )2+(ci −ai )2

a2i +b2i +c2i
ne

(37)

where ai , bi , and ci , respectively, denote the lengths of cell-edges of a triangular cell, and ne
stands for the total number of cells in the overall domain. Equation (37) is derived from the formula
proposed by Stillinger et al. [22] for a single triangle. According to Equation (37), the irregularity
vanishes for equilateral triangles and positive for all other shapes including isosceles triangles.
The bigger the value of �, the more irregular the grid.

Besides, as indicated by Liu [23], the average nodal spacing, h, for a set of irregular triangular
grid may be estimated as

h= V√
nnode−1

(38)

where V and nnode denote the area of the overall computational domain and the total number of
nodes across the domain, respectively. It is apparent that the averaged nodal spacing decreases as
the number of nodes increases.

The consequent adaptive grids for the Poisson problem, which are attained with the proposed
adaptive remeshing procedure, are shown in Figure 10(a)–(e). The relatively uniform grid, as
shown in Figure 10(a), is chosen as the initial grid on which the GSM solution is initially pursued.
The grid parameters are then computed according to the equidistribution criterion as outlined
in the previous section. For each adaptive remeshing procedure, the threshold value of �min is
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Figure 10. Adaptive grids at consequent steps: (a) initial grid; (b) 1st-adaptive grid; (c) 2nd-adaptive grid;
(d) 3rd-adaptive grid; and (e) final adaptive grid.

reduced by half so that the relatively finer grid will be generated subsequently. As indicated in
Figure 10(b)–(e), the cells in the regions with considerably large gradients are reasonably refined.
In other words, the regions with large gradients, as highlighted in Figure 8(b), are successfully
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(a) (b)

(c) (d)

Figure 11. Comparison of adaptive grids without and with cosmetic treatment: (a) without cosmetic
treatment; (b) with removal of triangles only; (c) with removal of triangles and diagonal swapping only;
and (d) with removal of triangles, diagonal swapping and grid smoothing (cells in red, blue and cyan:
selected cells with poor quality without cosmetic treatment; cells in green: cells after cosmetic treatment).

and accurately resolved with fine grid deployed by the adaptive remeshing technique adopted in
the current study.

Some cosmetic techniques, including removal of redundant cells, diagonal swapping of cell-
edges and grid smoothing, which are widely used in grid generation community for purposes to
improve the grid quality, have also been adopted in the proposed adaptive remeshing procedure.
The effects of these techniques are graphically illustrated in Figure 11. As shown in Figure 11(a),
without any cosmetic treatment, there are some highly distorted cells occurring in the domain.
They may result from the limited space for the last set of fronts during the domain triangulation by
the advancing front method. As shown in Figure 11(b), the removal of redundant triangles cannot
only reduce the number of nodes as well as cells, but improve the grid quality to some extents.
Thanks to simply diagonal swapping treatment, some neighboring cells are reconstructed, which
leads to substantial improvement in grid quality, as shown in Figure 11(c). In such a process, all
nodes and the number of cells are remained invariant while the linkages for affected cells are
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Table I. Comparison of numerical errors for grids improved with cosmetic techniques.

Case no. Cosmetic treatment No. of nodes Irregularity (�) L2-norm error

1. No 196 0.07567 6.9575×10−3

2. Removal of triangles 193 0.07223 6.6400×10−3

3. Removal of triangles;
diagonal swapping 193 0.06545 5.7165×10−3

4. Removal of triangles; 193 0.04590 5.5950×10−3

diagonal swapping;
grid smoothing

Table II. Numerical errors of adaptive GSM solutions with cosmetic techniques.

No. of Averaged nodal L2-norm error CPU time
Stage nodes spacing (h) (error) (s) � �min �max

Initial 123 9.91E−02 1.57E−02 5.30E−02 2.19E−02 1.00E−01 0.1
1st 304 6.08E−02 2.83E−03 2.14E−01 2.05E−02 5.00E−02 0.1
2nd 1099 3.11E−02 6.88E−04 2.92E+00 1.42E−02 2.50E−02 0.1
3rd 4014 1.60E−02 9.02E−05 5.07E+01 1.21E−02 1.25E−02 0.1
4th 15149 8.19E−03 4.45E−05 9.89E+02 9.90E−03 6.25E−03 0.1

Table III. Numerical errors of adaptive GSM solutions without cosmetic techniques.

No. of Averaged nodal L2-norm error CPU time
Stage nodes spacing (h) (error) (s) � �min �max

Initial 123 9.91E−02 1.65E−02 5.30E−02 3.17E−02 1.00E−01 0.1
1st 309 6.03E−02 3.06E−03 6.90E−01 3.46E−02 5.00E−02 0.1
2nd 1121 3.08E−02 6.13E−04 3.93E+00 2.75E−02 2.50E−02 0.1
3rd 4027 1.60E−02 2.00E−04 5.17E+01 2.34E−02 1.25E−02 0.1
4th 15200 8.18E−03 9.36E−05 1.22E+03 2.09E−02 6.25E−03 0.1

changed only. Furthermore, as depicted in Figure 11(d), as each interior node is shifted towards
the center of a polygon that is formed by all triangles linked with the node, the quality of overall
set of grid is further improved. Such substantial enhancement can also be found in Table I in terms
of number of nodes and irregularity of resultant grids.

Numerical errors of the adaptive GSM solutions obtained with and without the use of cosmetic
techniques are summarized in Tables II and III, respectively. For comparison purpose, the numerical
errors based on global refinement procedure are also tabulated in Table IV. As described in
the preceding section about the adaptive procedure, the sets of adaptive grids are obtained by
maintaining the value for �max and halving the value for �min consequently during the adaptive
process. The evolution of computational errors of adaptive solutions to the Poisson equation can
also be found in Figure 12.

As shown in Table II, as the adaptive process advances, the numerical error will decrease
monotonically, as well as the grid irregularity. This confirms that the successful clustering of nodes
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Table IV. Numerical errors of GSM solutions based on global refinement.

No. of Averaged nodal L2-norm error CPU time
Stage nodes spacing (h) (error) (s) �

Initial 123 9.91E−02 1.57E−02 5.30E−02 2.19E−02
1st 311 6.01E−02 6.24E−03 2.26E−01 1.28E−02
2nd 1104 3.10E−02 1.44E−03 1.96E+00 6.17E−03
3rd 4048 1.60E−02 3.73E−04 3.20E+01 3.10E−03
4th 15272 8.16E−03 9.43E−05 5.39E+02 2.09E−03

Figure 12. Evolution of computational errors with the changes in averaged cell spacing.

toward the regions with high gradients, thanks to the proposed adaptive procedure, gives rise to
the remarkably improved accuracy, with comparison to cases with the same number of nodes
uniformly distributed across the field. Once a relatively larger number of nodes are generated,
it is necessary to embark the cosmetic techniques with the adaptive procedure to improve the
grid quality so that the adaptive remeshing procedure still yields higher accuracy than the global
refinement process. This can be seen by comparing the data in Tables II and III, and in Figure 12.
Figure 12 also tells that the adaptive GSM can produce results at an expected accuracy with much
less number of nodes than the GSM solutions based on global refinement. As shown in Tables II
and IV, for an anticipated accuracy, it is allowed for a much less number of nodes using in the
proposed adaptive remeshing procedure than in the global refinement procedure. This will result
in dramatically reduced demand in computational cost, too.

It should be mentioned that the proposed GSM solver always gives accurate results for all sets of
grids studied here, including those grids with highly distorted cells. Such a behavior again implies
that the developed GSM should be very robust and stable, as already addressed by Liu and Xu [2].
Such an attractive feature will motivate us toward the development of anisotropic adaptive GSM
in immediate future, where stable and accurate solutions are still anticipated but more irregular
cells will have to be used.
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4.2. Solutions to Euler equations

4.2.1. Governing equations. In Cartesian coordinate system, without consideration of source terms,
the two-dimensional Euler equations for inviscid compressible flows take the following form:

�
⇀

W
�t

+∇ · ⇀

Fc=0 (39)

where
⇀

W and
⇀

Fc represent, respectively, the vectors of conservative variables, the convective fluxes.
They are in the form of

⇀

W =

⎡
⎢⎢⎢⎣

�

�u

�v

�E

⎤
⎥⎥⎥⎦ ,

⇀

Fc=

⎡
⎢⎢⎢⎢⎢⎣

�V

�uV +nx p

�vV +ny p

�

(
E+ p

�

)
V

⎤
⎥⎥⎥⎥⎥⎦ (40)

where �, u, v, p, and E denote the density, the two Cartesian velocity components, static pressure,
and the total internal energy, respectively. The contravariant velocity is defined as

V =⇀
v ·⇀n =nxu+nyv (41)

To close the equations, the equation of state is also included:

p=�RT (42)

where R is the gas constant and T is the temperature of the air.
The well-known second-order ROE method [24], which is based on the left and right states with

the help of Barth and Jespersen scheme [25], is used to predict the convective fluxes. Venkatakr-
ishnan’s limiter [26] is employed to avoid unphysical oscillation in solutions. The explicit 5-stage
Runge–Kutta method, as described previously, is used here for steady-state solutions.

4.2.2. Boundary conditions. The boundary control surfaces are used to close the smoothing
domains at boundaries. At a corner point where two or more boundaries meet with each other, the
boundary control surface is split into control surfaces for each boundary condition separately.

• Solid wall

In inviscid flows, slip wall conditions are imposed on the solid boundaries. As viscous friction is
ignored, the velocity vector must be tangential to the surface. This implies that the normal velocity
is zero. Hence, the contravariant velocity V is zero. Consequently, the vector of convective fluxes
in the governing equation reduces the pressure terms alone. That is to say,

⇀

Fc=

⎡
⎢⎢⎢⎣

0

nx pw
ny pw
0

⎤
⎥⎥⎥⎦ (43)

where pw denotes the wall pressure.

• Farfield
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Figure 13. Definition of farfield boundaries: (a) subsonic inflow boundary
and (b) subsonic outflow boundary.

The farfield conditions are imposed to the external bounds of the computational domains. As
addressed in Blazek [15], the numerical implementation of the farfield conditions has to fulfill two
basic requirements. First, the truncation of the domain should have no notable effects on the flow
solution as compared with the infinite domain. Second, any outgoing perturbations must not be
reflected back into the flow field. The farfield conditions based on the concept of characteristic
variables are employed in the current study. For the cases of the subsonic or transonic flows that
are studied here, the farfield conditions for subsonic inflow and outflow are applied to external
bounds in the simulations.

For a subsonic inflow, as shown in Figure 13(a), the following formulations are imposed at the
farfield bounds:

pb = 1
2 {pa+ pd −�0c0[nx (ua−ud)+ny(va−vd)]}

�b = �a+(pa− pd)/c
2
0

ub = ua−nx (pa− pb)/(�0c0)

vb = va−ny(pa− pb)/(�0c0)

(44)

where �0 and c0 correspond to values at the reference state that is set equal to the state at the
interior point. The values at point a are determined from the freestream state.

For a subsonic outflow as shown in Figure 13(b), the variables at farfield boundaries are obtained
from

pb = pa

�b = �d +(pb− pd)/c
2
0

ub = ud +nx (pd − pb)/(�0c0)

vb = va+ny(pd − pb)/(�0c0)

(45)

with pa being the prescribed static pressure.
In the present study, one-layer of dummy cells is generated on the farfield boundaries, which

is used to determine the values of field variables and their gradients on the boundaries. Besides,
the vortex correction in 2D, suggested by Usab and Murman [27], is included in the calculation
at the farfield boundaries in order to shrink the computational domain.

4.2.3. Adaptive GSM solutions. The adaptive GSM solver is used to solve the transonic inviscid
flow over the NACA0012 airfoil. For the testing case, the freestream corresponds to the following
conditions: T∞ =288K, p∞ =1.0×105 Pa, Ma=0.8, and �=1.25. Here, T∞, p∞, and Ma denote,
respectively, the temperature, static pressure, and Mach number of the freestream, and � stands
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for the angle of attack of the NACA0012 airfoil. In this test case, a strong shock occurs on
the upper surface of the airfoil and another relatively weak shock takes place on the lower
surface.

As shown in Figure 14(a), based on a set of relatively coarse grid, both the shocks are captured
in the standard GSM solver. However, it is obvious that the two predicated shocks are pretty wide,
which can be attributed to the insufficient resolution of grid near the shock regions. The proposed
adaptive GSM solver described in the preceding sections is used to improve the resolutions in
both the shock regions. In this study, error indicators based on the first and second derivatives
of density, respectively, are tested for comparison and the GSM results for the two options are
presented in details below.

As reported in the section about GSM solutions to the Poisson equation, the error indicators
based on first derivatives are sufficiently good to identify the regions to be refined, which correspond
to relatively large gradients in the smooth flow field. Since the first derivatives of density are
necessarily approximated and stored in the GSM analyses of the inviscid flow over the NACA 0012
airfoil, it is intrinsic to re-use them to estimate error indicators in the adaptive GSM solver. The
consequent adaptive grids and solutions are shown in Figure 14(a)–(e). It is striking that the grids
around the strong shock are sufficiently refined and the predicted shock front becomes thinner
as expected. However, it should be noted that the grid resolution around the weak shock is not
improved. The similar observation has ever been reported by Giraldo FX [19].

Besides, studies about this option also reveal that the final adaptive results show high dependence
on the resolution of boundary nodes on the airfoil surfaces. It should be mentioned that the results
shown in Figure 14 have been obtained with the help of additional constraint for preserving the
shape of the airfoil with sufficient enough boundary nodes. When a set of considerably coarse grid,
as shown in Figure 17(a), is used as the initial grid and the boundary nodes on the wall surfaces
are allowed to be freely adapted with the algorithm described in the preceding section, subsequent
adaptive grids, as shown in Figure 15, are found to fail in accurately resolving the leading edge
and thus the predicted strong shock is wrongly pushed towards the trailing edge. The manifest
deviation can also be seen in Figure 16 where the pressure coefficients on the airfoil surfaces
are plotted. In summary, the two scenarios are considered here: In the free adaption scenario, the
boundary nodes on the wall surfaces are purely adapted according to the estimated errors based on
local first derivatives of density. In the second scenario, a minimum grid size is imposed such that
the shape of the wall geometry can be well preserved during the adaptive process. It is noticeable
that the strong shock occurring on the upper surface is always successfully captured and resolved
with finer grids in both the scenarios. While, the weak shock on the lower surface can be visible
only in the second scenario where the nodes distributed on the wall are manipulated so as to
accurately preserve the physical shape of the airfoils.

Alternatively, the error indicators based on the second derivatives of density, as described in
Equation (25), are also examined in this case. With this option, a set of considerably coarse grid (see
Figure 17(a)) is used as the initial grid and the nodes on the airfoil surfaces are freely adapted. The
adaptive grids as well as the corresponding GSM solutions are shown in Figure 17. In comparison
with error indictors using first derivatives of density, relatively broader zones are identified for
further refinement in the very first adaptive process, as shown in Figure 17(b). The shock front is
not sufficiently refined, but its adjacent regions are refined instead. As shown in Figure 17(c)–(e),
as the adaption progresses, the narrower regions across the shocks are successively refined and
thus the shock front is necessarily refined, too. We find out that the multiple key features in the
transonic flow over the NACA0012 airfoil, which occur at the two shock regions, the leading, and
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Figure 14. Plots of adaptive grids and contours of density obtained with the adaptive GSM solver based
on the first-derivatives of density: (a) initial grid (boundary preserving, nnode=8346); (b) 1st-adaptive
grid (nnode=9381); (c) 2nd-adaptive grid (nnode=12788); (d) 3rd-adaptive grid (nnode=14139); and (e)

final adaptive grid (nnode=17955).

trailing edges, respectively, are all well resolved in the adaptive analyses. In addition, the nodes
distributed on the wall surfaces are freely and necessarily refined so that the shape of the wall
geometries is well captured. In summary, the option for error indicators based on second derivatives
is more accurate to capture all the key features than the option based on first derivatives.
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(a) (b)

Figure 15. Effects of resolutions of initial meshes on the accuracy of adaptive solutions: (a)
close-up view of poor grid resolution at the leading edge and (b) global view of the adaptive

grid and contour plot of density.
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Figure 16. Predicted pressure coefficients with the adaptive GSM solver based on first derivatives of density.

Figure 18 shows the predicted pressure coefficients on the surface of the airfoil for both the
options tested in the current study. Apparently, based on the second derivatives of density, the
weak-shock region is precisely resolved as well as the strong shock region, leading edge and
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(a)

(b) (c)

(d) (e)

Figure 17. Plots of adaptive grids and contours of density obtained with the adaptive GSM solver
based on the second derivatives of density: (a) initial grid (free adaption on boundaries, nnode=3927);
(b) 1st-adaptive grid (nnode=8718); (c) 2nd-adaptive grid (nnode=10148); (d) 3rd-adaptive grid

(nnode=25665); (e) final adaptive grid (nnode=34079).
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Figure 18. Predicted pressure coefficients with the adaptive GSM solver.
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Figure 19. Contour plot of the Mach number using the final adaptive grid based on
the second derivatives of density.
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trailing edge. Our results are agreeable well with Barth’s analysis [28] which is obtained based on
unstructured finite volume method.

The contour plot of the Mach number obtained in the adaptive GSM procedure with the second
option is shown in Figure 19. It is clear that the both shocks, as well as the stagnation point on
the leading edge and wake flow near the trailing edge are well solved.

Ideally, the proposed adaptive procedure is anticipated to be able to automatically identify most
key features that are required to be refined. The first option based on first derivatives of density
has been proved to be the ideal candidate for smooth flow fields. In flows with discontinuities, it
also effectively and successfully resolves the dominant shock, but fails in capturing some other
key features which concurrently occur in the flows but in relatively weaker strengths. The main
reason for such a failure is that the fist-derivative-based error indicator cannot resolve the boundary
correctly. Comparatively, the second option based on second derivatives of density leads to the
expected adaptive grid to resolve all the key features, as well as the boundary shape, in the flows
with discontinuities. The merit in accuracy may be due to the consistency in the order of accuracy
adopted in both the error indicator and the GSM solver. This may be considerably important for
the accurate resolution of boundary nodes. Thus, for flows with multiple key features with different
strengths, it is more preferable to use the second derivatives for estimating the error indicators in
the adaptive GSM procedure.

5. CONCLUSION

In the current study, a novel gradient smoothing method (GSM) formulated based on the strong form
of governing equations is developed with adaptive remeshing technique based on the advancing
front method. The GSM solver is valid for both regular and irregular cells so that flow behaviors
with domains of arbitrary geometry can be easily resolved. With the inclusion of adaptive remeshing
technique, the flows involving discontinuity or abrupt changes in space, such as a shock flow, can
be more precisely simulated. It is found that

• The proposed GSM scheme is very robust and stable so that it consistently results in accurate
results even for a set of grid with highly distorted cells.

• The adaptive GSM provides more accurate solutions, thanks to the ‘optimal’ grid achieved
with the error equidistribution strategy. On the other hand, the adaptive GSM can yield as
accurate results as the non-adaptive GSM but with remarkably less number of nodes.

• The proposed adaptive GSM is very stable during the overall adaptive process. As a large
number of nodes is generated in the domain, it is found that the cosmetic techniques can
effectively improve the grid quality and correspondingly the benefits from the adaptive solver
can be continuously possessed.

• The first-derivative-based error indicator is good enough to resolve the smooth flow field and
the dominant shock in the discontinuous flows. However, care should be taken to enforce the
boundary nodes to well represent the shape of the boundary geometry.

• As the second-derivative-based error indicator is used, all key flow features in the shock flow
fields, as well as the shape of wall boundaries, can be effectively and automatically identified
and then resolved accordingly. Thus, for abruptly changed flows with multiple key features,
it is recommended to use the second derivatives of density for error indicators estimation in
the proposed adaptive GSM solver.
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